Cours: Dérivation et continuité des fonctions

Fonctions et compositions

Définition:

Une **fonction** f est un procédé qui à chaque valeur d'une variable réelle x fait correspondre au plus une **image** On devrait donc écrire $f: x \mapsto f(x)$, mais on se contente souvent d'écrire f(x).

L'ensemble des réels qui ont une image par f est appelé le **domaine de définition** de f noté D_f .

Définition:

Soit g une fonction définie sur une partie E de \mathbb{R} à valeurs dans F (pour tout $x \in E$, $g(x) \in F$).

Soit *f* une fonction définie sur *F*.

$$x \xrightarrow{f \circ g} f \circ g(x)$$

On appelle **composée** de g suivie de f la fonction, notée f o g,

$$x \xrightarrow{g} g(x) \xrightarrow{f} f(g(x))$$

définie sur E par $(f \circ g)(x) = f[g(x)]$.

Exemple:

Soit *g* la fonction racine $g(x) = \sqrt{x}$ définie sur $[0; +\infty[$ à

valeurs dans \mathbb{R} ;

Soit *f* la fonction affine f(x) = 2x - 10 définie sur \mathbb{R} ;

On peut enchaîner les fonctions g puis f et définir ainsi

la composée de g suivie de $f: f \circ g$

	g		f	
$[0; +\infty[$	├	\mathbb{R}	\longmapsto	\mathbb{R}
9	\longmapsto		\longmapsto	
20.25	\longmapsto		\longmapsto	
100	\longmapsto		\longmapsto	
\boldsymbol{x}	\longmapsto		\longmapsto	

Remarque:

En général, la composée de g suivie de f n'est pas égale à la composée de f suivie de g.

Dans l'exemple précédent, l'image de 4 par $f \circ g$ est : f[g(4)] = f(2) = -6.

Mais on ne peut pas définir l'image de 4 par $g \circ f : f(4) = -2$ mais g(-2) n'existe pas.

Exercice:

- f(x) = 5x + 2 $f \circ g(x) = ...$

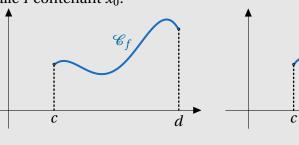
II. Continuité

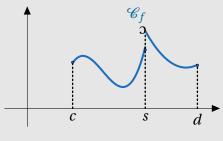
1. Définition

Définition:

Soit f une fonction définie sur un intervalle I contenant x_0 .

- 1. On dit que f est continue en x_0 lorsque $\lim_{x \to x_0} f(x) = f(x_0)$
- **2.** On dit que f est **continue sur** l'intervalle I lorsque f est continue en tout réel x de I.





Fonction continue sur [c; d]

Fonction non continue en *s*.

 $f(s) = \lim_{x \to s^{-}} f(x)$ mais $f(s) \neq \lim_{x \to s^{+}} f(x)$

Remarque : Dans le tableau de variation d'une fonction, une flèche symbolisera le sens de variation **et** la continuité de la fonction sur un intervalle.

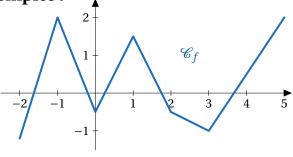
Théorème 1:

- Les fonctions polynômes, racine carrée, inverses sont continues sur chaque intervalle de leur ensemble de définition.
- 2. Les sommes, produits, quotients et composées de fonctions continues sont continues.
- **3.** Toute fonction dérivable sur I est continue sur I.

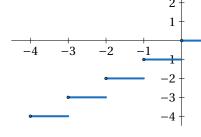
La réciproque est fausse!

y = E(x)

Exemples:



Fonction continue sur [-2; 6]mais non dérivable en -1, 0, 1, 2, et 3

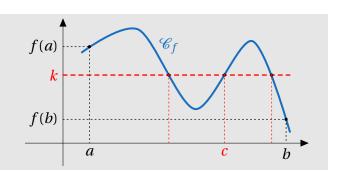


Fonction partie entière, non continue sur \mathbb{R} .

2. Théorème des valeurs intermédiaires

Théorème 2: Théorème des valeurs intermédiaires : TVI

Soient f une fonction définie et continue sur un intervalle I et a et b deux réels de I. Pour tout réel k compris entre f(a) et f(b), il existe **au moins** un réel $c \in [a;b]$ tel que f(c) = k.



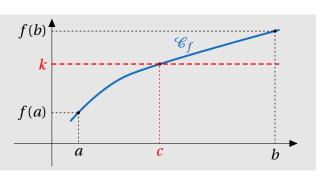
Remarque:

L'intervalle *I* peut être de la forme [a;b], $[a;+\infty[,]-\infty;b]$ ou $]-\infty;+\infty[$.

On remplacera alors f(a) (respectivement f(b)) par $\lim_{x\to a} f(x)$ (respectivement $\lim_{x\to b} f(x)$).

Cas particulier: "Corollaire du TVI" ou "Théorème de la bijection"

Si f est continue et strictement monotone sur I alors pour tout réel k compris entre f(a) et f(b), il existe **un unique** réel $c \in [a;b]$ tel que f(c) = k.



III. Dérivation

1. Nombre dérivé et fonction dérivée

Définition:

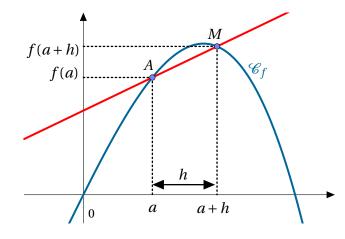
Soit f une fonction définie sur un intervalle I et a un réel quelconque de I.

On dit que f est **dérivable en** a ou que f admet un **nombre dérivé** en a, si la fonction $h \mapsto \frac{f(a+h)-f(a)}{h}$ admet une limite ℓ en 0. Le nombre ℓ est le **nombre dérivé** de f en a et est noté f'(a).

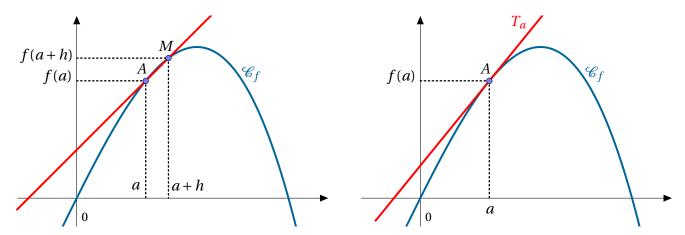
Graphiques:

Le rapport $\frac{f(a+h)-f(a)}{h}$ est le

coefficient directeur de la sécante (AM).



Quand on fait tendre h vers 0, on rapproche la sécante de la **tangente** recherchée en A.



On dit que la droite passant par A et de coefficient directeur f'(a) est la **tangente à la courbe** \mathscr{C}_f en A.

Une équation de cette **tangente** est donc :

$$y = f'(a)(x - a) + f(a)$$

Tableau des dérivées usuelles:

Intervalle de dérivabilité	Fonction : $x \mapsto f(x) =$	Fonction dérivée : $x \mapsto f'(x) =$	
R	k, constante		
R	mx + p		
R	x^2		
R	x^n , avec $n \in \mathbb{N}$		
]0;+∞[\sqrt{x}		
] $-\infty$; 0[et]0; $+\infty$ [$\frac{1}{x}$		

Propriété 3:

Toute fonction **polynomiale** est **continue** et **dérivable** sur \mathbb{R} .

Théorème 4: Formules de calculs de dérivées

Soient u et v deux fonctions dérivables sur \mathbb{R} (ou un intervalle de \mathbb{R}).

Alors u + v et $u \times v$ sont dérivables. Si $v \neq 0$ alors $\frac{1}{v}$ et $\frac{u}{v}$ sont dérivables aussi.

$\int f$	u+v	$u \times v$	$\frac{1}{\nu}$	$\frac{u}{v}$
f'				

2. Des formules complémentaires

Il nous manque des formules pour pouvoir calculer la dérivée de toutes les fonctions composées.

Théorème 5 : Dérivée de $x \mapsto f(x) = u(ax + b)$

Soit *u* une fonction définie, dérivable sur un intervalle *I*, *a* et *b* des réels.

La fonction f définie sur I par f(x) = u(ax + b) est dérivable sur I et pour tout $x \in I$, $f'(x) = a \times u'(ax + b)$.

Théorème 6 : Dérivée de $x \mapsto f(x) = \sqrt{u(x)}$

Soit u une fonction définie, dérivable et strictement positive sur un intervalle I. La fonction f définie pour tout $x \in I$ par $f(x) = \sqrt{u(x)}$ est dérivable sur I et pour tout $x \in I$, $f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$.

Théorème 7: Dérivée de $x \mapsto f(x) = u(x)^n$

Soit *u* une fonction définie, dérivable sur un intervalle *I* et *n* un entier naturel non nul.

La fonction f définie sur I par $f(x) = u(x)^n$ est dérivable sur I

et pour tout $x \in I$, $f'(x) = n \times u(x)^{n-1} \times u'(x)$.

Théorème 8: Cas général : Dérivée de $x \mapsto (g \circ f)(x)$

Soit f une fonction définie et dérivable sur un intervalle I.

Soit *g* une fonction définie et dérivable sur un intervalle *J* tel que pour tout $x \in I$ alors $f(x) \in J$.

La fonction $g \circ f$ est dérivable sur I et pour tout $x \in I$: $(g \circ f)'(x) = f'(x) \times g'(f(x))$

Exemples:

•
$$f(x) = \sqrt{5x+2}$$

$$f'(x) = \dots$$

•
$$f(x) = (5x+2)^4$$
 $f'(x) = ...$

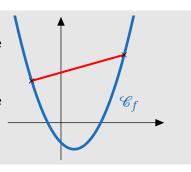
$$f'(x) = ..$$

IV. Convexité

Définition:

Soient f une fonction définie sur un intervalle I et \mathscr{C}_f sa courbe représentative dans un repère orthogonal.

On dit que f est **convexe** sur I lorsque \mathscr{C}_f est située en-dessous de chacune de ses sécantes entre les deux points d'intersection (corde).



Remarque : On dit que f est **concave** sur I lorsque \mathscr{C}_f est située au-dessus de chacune de ses cordes.

Théorème 9 :

Soit f une fonction définie sur un intervalle I et deux fois dérivable sur I.

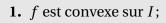
Si $f'' \ge 0$ sur I alors f est convexe sur I.

Théorème 10:

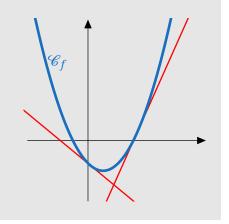
Soit f une fonction définie sur un intervalle I et deux fois dérivable sur I.

On note \mathcal{C}_f la courbe représentative de f.

Les quatre propositions suivantes sont équivalentes :

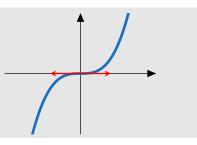


- **2.** \mathscr{C}_f est entièrement située au-dessus de ses tangentes;
- **3.** f' est croissante sur I;
- **4.** f'' est positive sur I.



Définition:

Un point d'inflexion est un point où la courbe représentative d'une fonction traverse sa tangente.



Remarque: Lorsque la courbe représentative d'une fonction admet un point d'inflexion, la fonction change de convexité: une fonction convexe devient concave ou inversement en ce point.