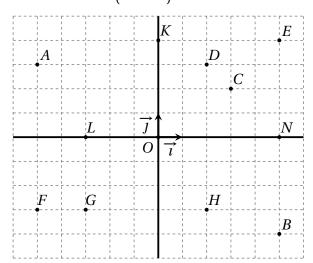
Corrections série 0 : Vecteurs

Exercice 1

On travaille dans le repère $(O; \vec{i}, \vec{j})$ ci-dessous :



Lire les coordonnées des vecteurs :

$$\overrightarrow{DE}\left(\begin{array}{c} \cdots \\ \cdots \\ \end{array}\right) \quad \overrightarrow{BH}\left(\begin{array}{c} \cdots \\ \cdots \\ \end{array}\right) \quad \overrightarrow{AD}\left(\begin{array}{c} \cdots \\ \cdots \\ \end{array}\right) \quad \overrightarrow{DA}\left(\begin{array}{c} \cdots \\ \cdots \\ \end{array}\right)$$
 et $\overrightarrow{NB}\left(\begin{array}{c} \cdots \\ \cdots \\ \end{array}\right)$.

Corrigé

Coordonnées de vecteurs :

$$\overrightarrow{DE} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \qquad \overrightarrow{BH} \begin{pmatrix} -3 \\ 1 \end{pmatrix} \qquad \overrightarrow{AD} \begin{pmatrix} 7 \\ 0 \end{pmatrix} \qquad \overrightarrow{DA} \begin{pmatrix} -7 \\ 0 \end{pmatrix} \qquad \text{et} \qquad \overrightarrow{NB} \begin{pmatrix} 0 \\ -4 \end{pmatrix}.$$

Exercice 2

On travaille dans un repère $(O; \vec{i}, \vec{j})$.

- 1. Soient les points A(1;-2); $B\left(0;\frac{3}{2}\right)$ et C(2;1).
 - a) Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
 - **b)** Déterminer les coordonnées du point D tel que $\overrightarrow{CD} = \overrightarrow{BA}$.
- **2.** Soient les points E(-2; 0), F(4; 3), G(3; -2) et H(1; -3).

Calculer les coordonnées des vecteurs \overrightarrow{EF} et \overrightarrow{HG} .

_ Corrigé _

On travaille dans un repère $(O; \vec{i}, \vec{j})$.

- 1. Soient les points A(1;-2); $B\left(0;\frac{3}{2}\right)$ et C(2;1).
 - a) Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 0-1\\ 3/2-(-2) \end{pmatrix}$, soit \overrightarrow{AB} $\begin{pmatrix} -1\\ 7/2 \end{pmatrix}$. \overrightarrow{AC} $\begin{pmatrix} 2-1\\ 1-(-2) \end{pmatrix}$, soit \overrightarrow{AC} $\begin{pmatrix} 1\\ 3 \end{pmatrix}$.

b) Déterminer les coordonnées du point D tel que $\overrightarrow{CD} = \overrightarrow{BA}$.

$$\overrightarrow{BA} \begin{pmatrix} 1 \\ -7/2 \end{pmatrix}$$
, et $\overrightarrow{CD} \begin{pmatrix} x_D - 2 \\ y_D - 1 \end{pmatrix}$.

On doit donc avoir $x_D - 2 = 1$ soit, $x_D = 3$ et $y_D - 1 = -7/2$ soit, $y_D = -5/2$. Donc, D (3; -2,5).

2. Soient les points E(-2; 0), F(4; 3), G(3; -2) et H(1; -3).

$$\overrightarrow{EF}$$
 $\begin{pmatrix} 4-(-2) \\ 3-0 \end{pmatrix}$, soit \overrightarrow{EF} $\begin{pmatrix} 6 \\ 3 \end{pmatrix}$ \overrightarrow{HG} $\begin{pmatrix} 3-1 \\ -2-(-3) \end{pmatrix}$, soit \overrightarrow{HG} $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Remarque: donc $\overrightarrow{EF} = 3\overrightarrow{HG}$ donc \overrightarrow{EF} et \overrightarrow{HG} sont colinéaires, donc (EF)//(HG)

Exercice 3

On travaille dans un repère $\left(O\,;\,\vec{i}\,,\,\vec{j}\right)$ orthonormé.

1. On considère les vecteurs $\overrightarrow{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$; $\overrightarrow{v} \begin{pmatrix} -3 \\ -2 \end{pmatrix}$; $\overrightarrow{w} \begin{pmatrix} -12 \\ -8 \end{pmatrix}$ et $\overrightarrow{r} \begin{pmatrix} -6 \\ 9 \end{pmatrix}$.

Quels sont les vecteurs orthogonaux entre eux?

- **2.** On considère les points A(2; 1); B(6; -3); C(8; 5) et D(4; 1).
 - a) Les droites (AB) et (CD) sont-elles perpendiculaires?
 - **b)** Et les droites (AC) et (BD)?
 - c) à revoir Déterminer l'abscisse du point $E(x_E; 1)$ tel que (AE) et (BD) soient perpendiculaires.
- 3. On considère les points M(2; 2); N(8; -2) et P(10; 1).

Le triangle MNP est-il rectangle?

4. Le point C(4; 1) appartient-il au cercle de diamètre [AB], avec A(2; 3) et B(12; 9)?

Corrigé .

On travaille dans un repère $(O; \vec{i}, \vec{j})$ orthonormé.

1. On considère les vecteurs $\overrightarrow{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$; $\overrightarrow{v} \begin{pmatrix} -3 \\ -2 \end{pmatrix}$; $\overrightarrow{w} \begin{pmatrix} -12 \\ -8 \end{pmatrix}$ et $\overrightarrow{r} \begin{pmatrix} -6 \\ 9 \end{pmatrix}$.

Pour \vec{u} et \vec{v} : xx' + yy' = -6 + 6 = 0 donc \vec{u} et \vec{v} sont orthogonaux.

Pour \vec{u} et \vec{w} : xx' + yy' = -24 + 24 = 0 donc \vec{u} et \vec{v} sont orthogonaux.

Pour \vec{u} et \vec{r} : $xx' + yy' = -12 + 27 \neq 0$ donc \vec{u} et \vec{r} ne sont pas orthogonaux.

Pour \overrightarrow{v} et \overrightarrow{w} : $xx' + yy' = 36 + 16 \neq 0$ donc \overrightarrow{v} et \overrightarrow{w} ne sont pas orthogonaux.

Pour \overrightarrow{v} et \overrightarrow{r} : xx' + yy' = 18 - 18 = 0 donc \overrightarrow{v} et \overrightarrow{r} sont orthogonaux.

Pour \vec{w} et \vec{r} : xx' + yy' = 72 - 72 = 0 donc \vec{w} et \vec{r} sont orthogonaux.

- **2.** On considère les points A(2; 1); B(6; -3); C(8; 5) et D(4; 1).
 - a) On doit vérifier si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux ou pas.

$$\overrightarrow{AB} \begin{pmatrix} 4 \\ -4 \end{pmatrix}$$
; $\overrightarrow{CD} \begin{pmatrix} -4 \\ -4 \end{pmatrix}$ et $-16 + 16 = 0$, donc $\overrightarrow{AB} \perp \overrightarrow{CD}$ et donc, $(AB) \perp (CD)$.

b) On procède de la même façon :

$$\overrightarrow{AC}$$
 $\begin{pmatrix} 6 \\ 4 \end{pmatrix}$; \overrightarrow{BD} $\begin{pmatrix} -2 \\ 4 \end{pmatrix}$ et $-12+16 \neq 0$, donc 1 et 1 ne sont pas orthogonaux et donc, les droites (*AC*) et (*BD*) ne sont pas perpendiculaires.

c)
$$\overrightarrow{AE} \begin{pmatrix} x_E - 2 \\ 0 \end{pmatrix}$$
; $\overrightarrow{BD} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ et on doit avoir : $-2(x_E - 2) = 0$, donc $x_E = 2$.

3. On considère les points M(2; 2); N(8; -2) et P(10; 1).

On a
$$\overrightarrow{MN} \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$
; $\overrightarrow{NP} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\overrightarrow{MP} \begin{pmatrix} 8 \\ -1 \end{pmatrix}$

En utilisant On a $\overrightarrow{MN} \begin{pmatrix} 6 \\ -4 \end{pmatrix}$; $\overrightarrow{NP} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, on a 12-12=0, donc $\overrightarrow{MN} \perp \overrightarrow{NP}$ ce qui signifie que le triangle MNP est rectangle en N.

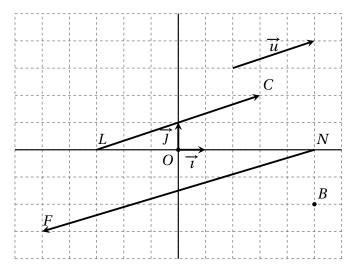
4. On sait que si C appartient au cercle de diamètre [AB] si et seulement si $\overrightarrow{CA} \perp \overrightarrow{CB}$.

On a
$$\overrightarrow{CA} \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$
; $\overrightarrow{CB} \begin{pmatrix} 8 \\ 8 \end{pmatrix}$. On a $xx' + yy' = -16 + 16 = 0$, donc \overrightarrow{CA} et \overrightarrow{CB} sont orthogonaux donc C appartient pas au cercle de diamètre $[AB]$.

Rem : on peut chercher l'équation du cercle de diamètre [AB) et vérifier si le point C appartient à ce cercle.

Exercice 4

On considère le repère $(O; \vec{i}, \vec{j})$ ci-dessous :



Graphiquement:

1. Lire les coordonnées des vecteurs :

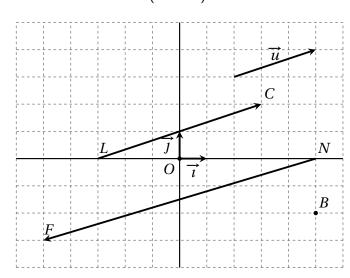
$$\overrightarrow{u} \left(\cdots \right) \quad \overrightarrow{LC} \left(\cdots \right) \quad \overrightarrow{NF} \left(\cdots \right)$$

- 2. \vec{u} et \vec{LC} semblent-ils colinéaires?
- 3. \vec{u} et \overrightarrow{NF} semblent-ils colinéaires?

Par calculs:

- 1. \vec{u} et \vec{LC} sont-ils colinéaires?
- 2. \vec{u} et \vec{NF} sont-ils colinéaires?
- 3. Les droites (LC) et (FN) sont-elles parallèles?
- **4.** Déterminer l'ordonnée du point E (50; y_E) afin que les droites (LC) et (BE) soient parallèles.
- **5.** Les points P(-12; -3), L et C sont-ils alignés?

On considère le repère $(O; \vec{i}, \vec{j})$ ci-dessous :



Graphiquement:

1) Lire les coordonnées des vecteurs :

$$\overrightarrow{u} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \qquad \overrightarrow{LC} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \qquad \overrightarrow{NF} \begin{pmatrix} -10 \\ -3 \end{pmatrix}$$

2) \overrightarrow{LC} et \overrightarrow{u} semblent colinéaires

3) \vec{u} et \vec{NF} ne semblent pas être colinéaires

Par calculs:

1) $\overrightarrow{LC} = 2\overrightarrow{u}$ donc \overrightarrow{LC} et \overrightarrow{u} sont colinéaires

2) $xy' - x'y = 3 \times (-3) - 1 \times (-10) = 1 \neq 0$ donc \overrightarrow{u} et \overrightarrow{NF} ne sont pas colinéaires

3) $xy' - x'y = 6 \times (-3) - 2 \times (-10) = 2 \neq 0$

donc \overrightarrow{LC} et \overrightarrow{NF} ne sont pas colinéaires, et les droites correspondantes non parallèles.

4) Les droites (LC) et (BE) sont parallèles si et seulement si \overrightarrow{LC} et \overrightarrow{BE} sont colinéaires.

Les diotes (*LC*) et (*BE*) sont paralleles si et seulement si *LC*

$$\overrightarrow{LC} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \text{ et } \overrightarrow{BE} \begin{pmatrix} x_E - 5 \\ y_E + 2 \end{pmatrix} \text{ soit } \overrightarrow{BE} \begin{pmatrix} 50 - 5 \\ y_E - 5 \end{pmatrix} \text{ ou encore } \overrightarrow{BE} \begin{pmatrix} 45 \\ y_E - 5 \end{pmatrix}$$

 \overrightarrow{LC} et \overrightarrow{BE} sont colinéaires si et seulement xy' - x'y = 0

si et seulement $6 \times (y_E - 5) - 2 \times 45 = 0$

si et seulement $6y_E - 30 - 90 = 0$

si et seulement $y_E = 20$

5) Les points P, L et C sont alignés si et seulement \overrightarrow{PL} et \overrightarrow{PC} sont colinéaires.

Or
$$\overrightarrow{PL} \begin{pmatrix} 9 \\ 3 \end{pmatrix}$$
 et $\overrightarrow{PC} \begin{pmatrix} 15 \\ 5 \end{pmatrix}$

Les points P, L et C sont alignés si et seulement xy' - x'y = 0

Or
$$xy' - x'y = 9 \times 5 - 3 \times 15 = 45 - 45 = 0$$

donc \overrightarrow{PL} et \overrightarrow{PC} sont colinéaires et les points P, L et C alignés

Exercice 5

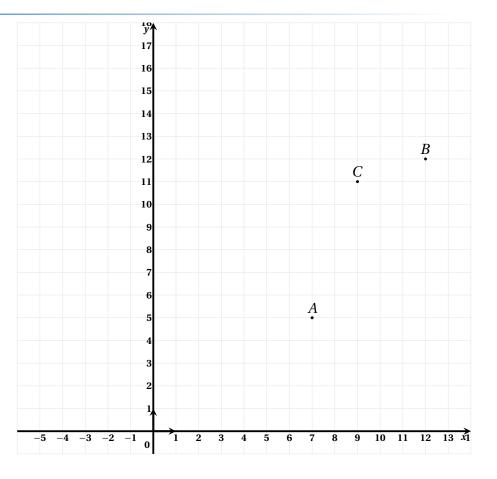
Dans le repère $(O; \vec{i}, \vec{j})$, on donne

$$A(7;5)$$
, $B(12;12)$ et $C(9;11)$

- 1) Calculer les coordonnées de \overrightarrow{AB} et en déduire celles de \overrightarrow{BA} .
- 2) Calculer les coordonnées de $\overrightarrow{BA} + 3\overrightarrow{BC}$
- 3) On note D(x; y).

 Déterminer les coordonnées de Dtel que $\overrightarrow{CD} = \overrightarrow{BA} + 3\overrightarrow{BC}$
- 4) On note E(x; y).

 Déterminer les coordonnées de Etel que $\overrightarrow{EA} = 2\overrightarrow{EC}$



Corrigé

Dans le repère $(O; \vec{i}, \vec{j})$, on donne

$$A(7; 5)$$
, $B(12; 12)$ et $C(9; 11)$

1)
$$\overrightarrow{AB} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$
 et donc $\overrightarrow{BA} \begin{pmatrix} -5 \\ -7 \end{pmatrix}$.

2)
$$\overrightarrow{BA} \begin{pmatrix} -5 \\ -7 \end{pmatrix}$$
 et $\overrightarrow{BC} \begin{pmatrix} -3 \\ -1 \end{pmatrix}$ donc $\overrightarrow{BA} + 3 \overrightarrow{BC} \begin{pmatrix} -5 + 3 \times (-3) \\ -7 + 3 \times (-1) \end{pmatrix} = \begin{pmatrix} -14 \\ -10 \end{pmatrix}$

3) On note D(x; y).

$$\overrightarrow{CD} = \overrightarrow{BA} + 3\overrightarrow{BC} \quad \Leftrightarrow \quad \begin{pmatrix} x - 9 \\ y - 11 \end{pmatrix} = \begin{pmatrix} -14 \\ -10 \end{pmatrix} \quad \Leftrightarrow \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ 1 \end{pmatrix}$$

Donc D(-5; 1)

4) On note E(x; y).

$$\overrightarrow{EA} = 2\overrightarrow{EC} \Leftrightarrow \begin{pmatrix} 7 - x \\ 5 - y \end{pmatrix} = 2 \begin{pmatrix} 9 - x \\ 11 - y \end{pmatrix} \Leftrightarrow \begin{pmatrix} 7 - x \\ 5 - y \end{pmatrix} = \begin{pmatrix} 18 - 2x \\ 22 - 2y \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} 7 - x = 18 - 2x \\ 5 - y = 22 - 2y \end{cases} \Leftrightarrow \begin{cases} x = 11 \\ y = 17 \end{cases}$$
Donc $E(11; 17)$