Crigonométrie

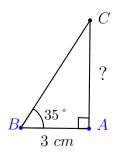
I Définition

Définition

Soit ABC un **triangle rectangle** en A. Le **cosinus**, le **sinus** et la **tangente** de l'angle aigu \widehat{B} sont notés respectivement $cos(\widehat{B})$, $sin(\widehat{B})$ et $tan(\widehat{B})$ définis par : $cos(\widehat{B}) = \frac{longueur\ du\ côt\'{e}\ adjacent\ \grave{a}\ \widehat{B}}{longueur\ du\ côt\'{e}\ oppos\'{e}\ \grave{a}\ \widehat{B}} = \frac{BA}{BC}$ $sin(\widehat{B}) = \frac{longueur\ du\ côt\'{e}\ oppos\'{e}\ \grave{a}\ \widehat{B}}{longueur\ du\ côt\'{e}\ oppos\'{e}\ \grave{a}\ \widehat{B}} = \frac{AC}{AB}$ $tan(\widehat{B}) = \frac{longueur\ du\ côt\'{e}\ adjacent\ \grave{a}\ \widehat{B}}{longueur\ du\ côt\'{e}\ adjacent\ \grave{a}\ \widehat{B}} = \frac{AC}{AB}$

II Exemples

II.1 Calcul de la longueur d'un côté d'un triangle rectangle


ABC est un **triangle rectangle** en A.

On donne $AB = 3 \ cm$ et $\hat{B} = 35^{\circ}$.

Calculer AC.

- \Rightarrow Le triangle ABC est rectangle en A.
- \Rightarrow On a $\hat{B} = 35^{\circ}$.
- \Rightarrow On a AB, le côté adjacent à \hat{B} .
- \Rightarrow On cherche AC, le côté opposé à \widehat{B} .

On peut donc utiliser la tangente :

$$tan(\widehat{B}) = \frac{AC}{BA}$$

$$tan(35\degree) = \frac{AC}{3}$$

On remplace les lettres par les valeurs connues

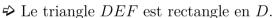
$$\frac{\tan(35)}{1} = \frac{AC}{3}$$

On effectue le produit en croix

 $tan(35) \times 3 = AC \times 1$

$$AC = tan(35) \times 3$$

Donc $AC \approx 2, 1 \text{ cm}$


La calculatrice donne une valeur approchée de tan(35)

II.2 Calcul d'un angle aigu dans un triangle rectangle

DEF est un **triangle rectangle** en D.

On donne $DF = 5 \ cm \ et \ EF = 7 \ cm$.

Calculer la mesure de l'angle \hat{E} .

 \Rightarrow On cherche \hat{E} °.

$$\Rightarrow$$
 On a $DF = 5$ cm, le **côté opposé** à \hat{E} .

 \Rightarrow On a EF = 7 cm, l'hypoténuse.

On peut donc utiliser le sinus :

$$sin(\widehat{E}) = \frac{DF}{EF}$$

$$sin(\widehat{E}) = \frac{5}{7}$$
 On remplace les lettres par les valeurs connues
$$\widehat{E} \approx 46^{\circ}$$
 On tape $Asin(\frac{5}{7})$ ou $sin^{-1}(\frac{5}{7})$ sur la calculatrice

III Propriétés

Propriétés :

Soit \hat{A} un angle aigu.

Alors on a les égalités suivantes :

$$(\cos(\hat{A}))^2 + (\sin(\hat{A}))^2 = 1$$